Synthesizers, Music & Broadcasting : T. Yahaya Abdullah
Think of it as one person singing and another person grabbing the throat of the first and shaking him in a rhythmic manner; the singer being the Carrier and the throttler being the Modulator.
In analogue synthesizers, you can use an LFO (Low Frequency Oscillator) to modulate a VCO (Voltage Controlled Oscillator). Let's take a slow LFO and modulate the VCO... what happens is that the slowly rising and falling LFO makes the pitch of the VCO rise and fall also, giving you a sort of wobbly sound (referred to as VIBRATO). Increase the modulating LFO Amount and there's more wobbling. Increase the modulating LFO Speed and the wobbling gets faster. This is also commonly called "Pitch Modulation".
Imagine an old analog synth with 2 VCOs... When you play the keyboard, both the VCOs will emit their respective waveforms, taking its pitch by reference of the notes played on the keyboard. Now imagine rerouting VCO1 into the modulation input for VCO2... Play the keyboard and both VCOs will play their respective notes but now the pitch of VCO2 is changing exactly in time with the frequency of VCO1. And there we have it ... one FM synth (VCO1=Modulator; VCO2=Carrier). Some synths already have this facility except it's commonly called "Cross-Modulation".
Algorithms are the preset combinations of routing available to you. Note that the Carriers are always the last Operators in any Algorithm chain and all other Operators are Modulators.
The carrier frequency "C" and the modulator frequency "M" will together determine which harmonics will exist (or have the possibility to exist) in the harmonic spectrum. The harmonic spectrum is a graphic representation of frequencies where "1" is the fundamental frequency and the other harmonics are just multiples of the fundamental.
The rules determining which harmonics can exist are as follows:-
| | | | | | | | | | | | | | | | | |
1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 |
C-4M | C-3M | C-2M | C-M | Carrier | C+M | C+2M | C+3M | C+4M |
The appearance of Sidebands is always in pairs on each side of "C". These Sideband pairs are ranked by their "order" of separation from "C" (eg 1st pair is "M" distance apart from "C", 2nd pair is 2x"M" distance apart from "C"... etc).
Now, it is important to note the following:-
M | C | Sidebands | |||||
---|---|---|---|---|---|---|---|
2 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
1 | (1) | (3) | (5) | (7) | (9) | ||
3 | 5 | 8 | 11 | 14 | 17 | 20 | 23 |
2 | (1) | (4) | (7) | (10) | (13) | ||
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 | (1) | (2) | (3) | (4) | (5) |
When the sidebands are coincident, you'll notice that the separation between them is regular. With non-coincidental sidebands, you'll have an alternating separation (eg 1,2, ,4,5, ,7,8... etc). This sort of harmonic arrangement cannot be obtained using normal subtractive synthesis.
IMPORTANT NOTE - if you replace the Carrier value with that of any Sideband (reflected or not), you get the same Series. Try it!
Also note that detuning the Carrier Frequency (C) produces quite a remarkable change in the series. In M:C = 1:1 (with coincident sidebands), if we detune the Carrier to C=1.01, the unreflected bands will be at 2.01, 3.01, 4.01, 5.01 etc and the reflected bands will be at 0.99, 1.99, 2.99, 3.99, etc, so they no longer coincide.
Certain series have a "x2" or "x3" on them. It is the same series except that it is transposed upward by that amount.
C\M | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1:1 | 2:1 | 3:1 | 4:1 | 5:1 | 6:1 | 7:1 | 8:1 | 9:1 | 10:1 | 11:1 | 12:1 | 13:1 | 14:1 | 15:1 | 16:1 |
2 | 1:1 | 1:1 x2 | 3:1 | 2:1 x2 | 5:2 | 3:1 x2 | 7:2 | 4:1 x2 | 9:2 | 5:1 x2 | 11:2 | 6:1 x2 | 13:2 | 7:1 x2 | 15:2 | 8:1 x2 |
3 | 1:1 | 2:1 | 1:1 x3 | 4:1 | 5:2 | 2:1 x3 | 7:3 | 8:3 | 3:1 x3 | 10:3 | 11:3 | 4:1 x3 | 13:3 | 14:3 | 5:1 x3 | 16:3 |
4 | 1:1 | 1:1 x2 | 3:1 | 1:1 x4 | 5:1 | 3:1 x2 | 7:3 | 2:1 x4 | 9:4 | 5:2 x2 | 11:4 | 3:1 x4 | 13:4 | 7:2 x2 | 15:4 | 4:1 x4 |
5 | 1:1 | 2:1 | 3:1 | 4:1 | 1:1 x5 | 6:1 | 7:2 | 8:3 | 9:4 | 2:1 x5 | 11:5 | 12:5 | 13:5 | 14:5 | 3:1 x5 | 16:5 |
6 | 1:1 | 1:1 x2 | 1:1 x3 | 2:1 x2 | 5:1 | 1:1 x6 | 7:1 | 4:1 x2 | 3:1 x3 | 5:2 x2 | 11:5 | 2:1 x6 | 13:6 | 7:3 x2 | 5:2 x3 | 8:3 x2 |
7 | 1:1 | 2:1 | 3:1 | 4:1 | 5:2 | 6:1 | 1:1 x7 | 8:1 | 9:2 | 10:3 | 11:4 | 12:5 | 13:6 | 2:1 x7 | 15:7 | 16:7 |
8 | 1:1 | 1:1 x2 | 3:1 | 1:1 x4 | 5:2 | 3:1 x2 | 7:1 | 1:1 x8 | 9:1 | 5:1 x2 | 11:3 | 3:1 x4 | 13:5 | 7:3 x2 | 15:7 | 2:1 x8 |
9 | 1:1 | 2:1 | 1:1 x3 | 4:1 | 5:1 | 2:1 x3 | 7:2 | 8:1 | 1:1 x9 | 10:1 | 11:2 | 4:1 x3 | 13:4 | 14:5 | 5:2 x3 | 16:7 |
10 | 1:1 | 1:1 x2 | 3:1 | 2:1 x2 | 1:1 x5 | 3:1 x2 | 7:3 | 4:1 x2 | 9:1 | 1:1 x10 | 11:1 | 6:1 x2 | 13:3 | 7:2 x2 | 3:1 x5 | 8:3 x2 |
11 | 1:1 | 2:1 | 3:1 | 4:1 | 5:1 | 6:1 | 7:3 | 8:3 | 9:2 | 10:1 | 1:1 x11 | 12:1 | 13:2 | 14:3 | 15:4 | 16:5 |
12 | 1:1 | 1:1 x2 | 1:1 x3 | 1:1 x4 | 5:2 | 1:1 x6 | 7:2 | 2:1 x4 | 3:1 x3 | 5:1 x2 | 11:1 | 1:1 x12 | 13:1 | 7:1 x2 | 5:1 x3 | 4:1 x4 |
13 | 1:1 | 2:1 | 3:1 | 4:1 | 5:2 | 6:1 | 7:1 | 8:3 | 9:4 | 10:3 | 11:2 | 12:1 | 1:1 x13 | 14:1 | 15:2 | 16:3 |
14 | 1:1 | 1:1 x2 | 3:1 | 2:1 x2 | 5:1 | 3:1 x2 | 1:1 x7 | 4:1 x2 | 9:4 | 5:2 x2 | 11:3 | 6:1 x2 | 13:1 | 1:1 x14 | 15:1 | 8:1 x2 |
15 | 1:1 | 2:1 | 1:1 x3 | 4:1 | 1:1 x5 | 2:1 x3 | 7:1 | 8:1 | 3:1 x3 | 2:1 x5 | 11:4 | 4:1 x3 | 13:2 | 14:1 | 1:1 x15 | 16:1 |
16 | 1:1 | 1:1 x2 | 3:1 | 1:1 x4 | 5:1 | 3:1 x2 | 7:2 | 1:1 x8 | 9:2 | 5:2 x2 | 11:5 | 3:1 x4 | 13:3 | 7:1 x2 | 15:1 | 1:1 x16 |
Series | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
1:1 | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ |
2:1 | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ][ | ||||||||||||||||
3:1 | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ||||||||||
4:1 | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ||||||||||||||||
5:1 | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | |||||||||||||||||||
6:1 | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | |||||||||||||||||||||
7:1 | ] | [ | ] | [ | ] | [ | ] | [ | ] | |||||||||||||||||||||||
8:1 | ] | [ | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||
9:1 | ] | [ | ] | [ | ] | [ | ] | |||||||||||||||||||||||||
10:1 | ] | [ | ] | [ | ] | [ | ] | |||||||||||||||||||||||||
11:1 | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||||
12:1 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
13:1 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
14:1 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
15:1 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
16:1 | ] | [ | ] | [ | ||||||||||||||||||||||||||||
Series | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
5:2 | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | |||||||||||||||||||
7:2 | ] | [ | ] | [ | ] | [ | ] | [ | ] | |||||||||||||||||||||||
9:2 | ] | [ | ] | [ | ] | [ | ] | |||||||||||||||||||||||||
11:2 | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||||
13:2 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
15:2 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
7:3 | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||
8:3 | ] | [ | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||
10:3 | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||||
11:3 | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||||
13:3 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
14:3 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
16:3 | ] | [ | ] | [ | ||||||||||||||||||||||||||||
Series | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
9:4 | ] | [ | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||
11:4 | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||||
13:4 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
15:4 | ] | [ | ] | [ | ||||||||||||||||||||||||||||
11:5 | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||||
12:5 | ] | [ | ] | [ | ] | [ | ||||||||||||||||||||||||||
13:5 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
14:5 | ] | [ | ] | [ | ||||||||||||||||||||||||||||
16:5 | ] | [ | ] | [ | ||||||||||||||||||||||||||||
13:6 | ] | [ | ] | [ | ] | |||||||||||||||||||||||||||
15:7 | ] | [ | ] | [ | ||||||||||||||||||||||||||||
16:7 | ] | [ | ] | [ |
The exact amplitudes are very difficult to calculate and, quite frankly, you only need to know how the bands are affected (rather than go through the messy calculations).
Very basically, as you increase the Modulation Amount, more and more sidebands will appear. The way in which the sidebands appear is what gives DX-FM its characteristic sound.
The examples given are (i) M:C = 1:7 [with no reflected sidebands], (ii) M:C = 3:4 [with reflected sidebands which are non-coincident], and (iii) M:C = 1:1 [with reflected sidebands which are coincident].
M:C = 1:7 | M:C = 3:4 | M:C = 1:1 | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | ||||||||||||||||||||||||||||||||
| | | | | | | | |||||||||||||||||||||||||||||
| | | | | | | | |||||||||||||||||||||||||||||
| | | | | | | | |||||||||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | ||||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | ||||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||||||||||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ] - [ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ] - [ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| | ||||||||||||||||||||||||||||||||
| | | | | | | | |||||||||||||||||||||||||||||
| | | | | | | | | | ||||||||||||||||||||||||||||
| | | | | | | | | | ||||||||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | |||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||||||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ] - [ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ] - [ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| | ||||||||||||||||||||||||||||||||
| | ||||||||||||||||||||||||||||||||
| | | | | | | | | | | | |||||||||||||||||||||||||||
| | | | | | | | | | | | |||||||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | ||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ] - [ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ] - [ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| | ||||||||||||||||||||||||||||||||
| | ||||||||||||||||||||||||||||||||
| | | | | | ||||||||||||||||||||||||||||||
| | | | | | | | | | | | |||||||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | ||||||||||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |||||||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||||||||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
6-op~99 | 4-op~99 | 4-op~127 |
---|---|---|
67 | 60 | 97 |
77 | 68 | 105 |
82 | 73 | 110 |
86 | 77 | 113 |
88 | 79 | 116 |
90 | 82 | 118 |
92 | 84 | 120 |
For a familiarisation of a selection of synthesizers, see Synthesizer Layouts.